Three-Step Projective Methods for Solving the Split Feasibility Problems
نویسندگان
چکیده
منابع مشابه
A Modified Halpern’s Iterative Scheme for Solving Split Feasibility Problems
and Applied Analysis 3 PK is called the metric projection ofH ontoK. It is well known that PK is a nonexpansive mapping ofH onto K and satisfies 〈x − y, PKx − PKy〉 ≥ ∥ PKx − PKy ∥ ∥ 2 , 2.3 for every x, y ∈ H. Moreover, PKx is characterized by the following properties: PKx ∈ K and 〈x − PKx, y − PKx〉 ≤ 0, ∥ ∥x − y∥∥ ≥ ‖x − PKx‖ ∥ ∥y − PKx ∥
متن کاملSome Modified Extragradient Methods for Solving Split Feasibility and Fixed Point Problems
and Applied Analysis 3 in medical image reconstruction. A number of image reconstruction problems can be formulated as the SFP; see, for example, 11 and the references therein. Recently, it is found that the SFP can also be applied to study intensity-modulated radiation therapy IMRT 12–14 . In the recent past, a wide variety of iterative methods have been used in signal processing and image rec...
متن کاملMODIFIED K-STEP METHOD FOR SOLVING FUZZY INITIAL VALUE PROBLEMS
We are concerned with the development of a K−step method for the numerical solution of fuzzy initial value problems. Convergence and stability of the method are also proved in detail. Moreover, a specific method of order 4 is found. The numerical results show that the proposed fourth order method is efficient for solving fuzzy differential equations.
متن کاملRegularized Methods for the Split Feasibility Problem
and Applied Analysis 3 However, 1.8 is, in general, ill posed. So regularization is needed. We consider Tikhonov’s regularization min x∈C fα : 1 2 ∥I − PQ ) Ax ∥∥2 1 2 α‖x‖, 1.9 where α > 0 is the regularization parameter. We can compute the gradient ∇fα of fα as ∇fα ∇f x αI A∗ ( I − PQ ) A αI. 1.10 Define a Picard iterates x n 1 PC ( I − γA∗I − PQ ) A αI )) x n 1.11 Xu 20 shown that if the SFP...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7080712